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Abstract-This paper derives a closed-form solution for the stress distributions in an infinite plane
loaded by a rivet of a different material under either plane stress or plane strain condition. A
distinctive feature of the present analysis is that the rivet load is modelled by distributed body forces
over the section of the rivet, in contrast to the commonly-used assumption of a concentrated load
acting at the centre of the rivet. Two body force potentials are introduced to model the cases
of conservative, uniform distributed force (Loading Case I) and non-conservative, non-uniform
distributed force (Loading Case II), which is similar to those caused by shear force on a circular
section. Our results show that the normal contact stress decreases with both the stiffness ratio
~ = /12//11 (J/I and /12 are the shear moduli for the plane and rivet, respectively) and the frictional
coefficient /1 between the plane and rivet; conversely, the shear contact stress increases with both /1
and ~. The normal contact stress for Loading Case I is larger than that for Loading Case II, while
the opposite conclusion applies to the shear contact stress; their differences are more apparent for
larger (. Larger values of ~ and J/ result in higher maximum hoop stress and the corresponding
location of maximum hoop stress deviates farther from the edge ofcontact zone; and the maximum
hoop stress resulted from Loading Case II is larger than that induced by Loading Case I. The hoop
stress at the rivet hole agrees well with experimental results by Coker and Filon [Coker, E, G. and
Filon, 1. N. G. (1931). A Treatise on Photoelasticity, Cambridge University Press, Cambridge],
Frocht [Frocht, M. M, (1949). Photoelasticity, Vol. I, Wiley, NY), Nisida and Saito [Nisida, M.
and Saito, H. (1966). Stress distributions in a semi-infinite plate due to a pin determined by
interferometric method. Experimental Mechanics 6,273-279] and Hyer and Liu [Hyer, M. W. and
Liu, D. (1984). Stresses in pin-loaded orthotropic plates using photoelasticity. NASA contractor
report, CR-I72498, NASA, USA). In general, a compression zone (n > 181 > 8]) and a tension zone
(8 1 > 181 > 0) in hoop stress are observed, where 8 is measured from the direction of the resultant
rivet force and the typical value of 8] is about 160°. For the case of a rigid rivet with high friction,
a second compressive zone near 8 = 0 is observed; this differs from all previous theoretical studies,
but agrees with the experimental observation by Frocht [Frocht, M. M. (1949). Photoelasticity, vol.
I, Wiley, NY]. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

The stress concentration at a circular hole in an infinite elastic plane, under either plane
strain or plane stress condition, loaded by a rivet has been a classical problem in linear
elasticity, The stress concentration factor at rivet-holes has application in virtually every
field of design of structures and machines, such as in construction and aerospace industries
(e.g., Timoshenko and Goodier, 1970; Peterson, 1974). Over the years, this problem has
occupied the minds of many mathematicians and experimentalists.

In recent years, panels of marble, granite and other rocks have been commonly used
as means of cladding exterior walls or curtain walls of expensive buildings in downtown
areas of many big cities throughout the world, Although these rock panels are much more
expensive than steel and brick cladding, the shining surfaces of rock panels provide an
aesthetic and prestigious appearance of the building. Thus, there is an increasing tendency
to replace brick or steel walls by the curtain walls formed by rock panels. Although the
rock-panel-cladding is theoretically non-load-bearing, it must be able to withstand wind
pressure. The most economical and technical feasible solution for the wind-bearing system
is probably the use of a grid formed by transoms and mullions which can withstand the
wind pressure. The introduction of transoms and mullions will, however, destroy a con
tinuous surface of shining rock; thus, in practice, steel bolt- or rivet-fixing from the inside
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Fig. I. A sketch for an infinite plane loaded by a rivet with resultant force P. Separation of the rivet
and the infinite plane is assumed to develop within the range: n/2 < (J < nand -n < (J < -n/2,

while the non-slip contact region is within - n/2 < (J < n/2.

of the building have to be used in connecting the rock panels. Most brittle failures in these
rock panels actually result from the stress concentration at the rivet-rock interface under
wind pressure. The breakage failure of the rock panels will cause casualties when the
fragments of the panels fall onto the street level from above. Since high quality rock panels
are very expensive, the use of an optimum thickness for the panels is essential to achieve
an economical but safe design. To date, the method of analysis used for such design is
rather primitive, and much remains to be done.

The present study does not attempt to solve the problem completely, but instead
considers analytically the most fundamental problem of stress concentration in an infinite
plane loaded by a rivet of a different material. The results of the present study should shed
light on the more practical problem of rivet-rock panel connection. For mathematical
simplicity, both the rock panel and the steel rivet are considered as isotropic elastic.

The first mathematical solution for the stress concentration around a pinned-rivet in
an infinite plate was obtained by Bickley (1928) who, motivated by experimental results of
photoelastic method, assumed that the rivet-induced compressive normal stress is pro
portional to cos ewhile the rivet-induced shear stress is proportional to sin3 ecos e, where
e is the angle measured from the x-axis along which the resultant force acts as shown in
Fig. 1. Knight (1935) proposed a more realistic stress distribution on the rivet hole, which
allows half of the boundary between the rivet and the infinite plate to separate (i.e.,
both normal and shear tractions vanish on this portion of the circular boundary). Other
theoretical analyses for rivet problems include the works by Theocaris (1956) on an infinite
strip, by Mori (1972) on a semi-infinite plate, and by Levy and Smith (1949) on an infinite
plate with reinforced rivet hole. Experimental studies include the works by Coker and Filon
(1931), Frocht and Hill (1940), Frocht (1949), Jessop et al. (1958), Cox and Brown (1964),
Nisida and Saito (1966), and Hyer and Liu (1984). Taking displacement compatibility into
consideration, Noble and Hussain (1969) obtained the normal contact stress between a
rivet and an infinite plane in smooth contact for the case that the elastic constants of the
rivet and the outer body satisfy: (1 - 2Vt)1l2 = III (1- 2V2) (where Ili and Vi denote the shear
modulus and Poisson's ratio and i = 1,2 for the outer body and rivet, respectively), and de
Jong (1977) and Mizushima and Hamada (1983) obtained the normal contact stress for
the case of a rigid rivet. Rao (1978), Hyer and Klang (1985) and Hyer et al. (1987)
have solved numerically the problem of a pin-loaded isotropic or orthotropic plate with
interference fit and clearance fit. Using the collocation method, Hyer and Klang (1985) and
Hyer et al. (1987) have calculated the stresses near the hole in an orthotropic plate loaded
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by a rivet of different materials, including steel, aluminium and rigid rivets. However, no
closed-form solution has been proposed for the rivet of arbitrary stiffness.

Therefore, with possible application to rivet-rock panel connection, we consider here
the problem of an infinite plane loaded by a rivet of arbitrary stiffness. The method of
solution employed in this study is modified from those proposed by Knight (1935). Although
Knight's (1935) approach, as mentioned by Mizushima and Hamada (1983), ignores the
displacement compatibility between the hole and rivet, such approach has been applied
successfully by Theocaris (1956). In addition, Fig. 9 of Mizushima and Hamada (1983)
showed that both the hoop and normal contact stresses predicted by Knight (1935) are
comparable to both the experimental observation by Nisida and Saito (1966) and the
theoretical solution by Mizushima and Hamada (1983), in which radial displacement
compatibility had been accounted properly. Thus, for mathematical simplicity Knight's
(1935) approach is adopted here.

There is, however, one main problem with the shear contact stress proposed by Knight
(1935). In particular, Knight (1935) assumed that the shear contact stress is proportional
to sin eon the right-hand half of the hole but equals zero on the left-hand half of the hole
(see Fig. I). This assumption predicts a jump in the shear contact stress which increases
from zero at e= n/2 +b to a finite value at e= n/2 - b, for any arbitrarily small positive
real number b. This discontinuity in shear stress on the boundary, however, contradicts the
photoelastic observation on an isotropic plate containing a pin-load by Hyer and Liu
(1984). Instead, Fig. 12 of Hyer and Liu (1984) showed that the shear contact stress is
roughly proportional to sin 2e. Motivated by this observation, we assume here a e-depen
dency of sin 2e for the shear contact stress.

More specifically, the rivet problem is first subdivided into two auxiliary problems.
The first problem is the solution for the stress distribution in the plane loaded by a rivet of
a different material, which is bonded perfectly to the plane. Then, the second auxiliary
problem seeks a solution that cancels both normal and shear tractions caused by the first
auxiliary problem on the left-hand half of the circular boundary but produces resultant
shear and normal stresses proportional to sin 2e and cos eon the right-hand half, respec
tively. Note that gap is allowed to be developed on the left-hand half of the hole, as shown
in Fig. I. The stress distribution around the rivet hole will simply be the superposition of
auxiliary problems one and two.

Another distinctive feature of the present study which differs from previous works is
that the net force carried by the rivet is not modelled by a concentrated force acting at the
centre of the rivet. The shear source transferred by the rivet is modelled here by two types
of body forces distributed over the section of the rivet. The first one is the idealized
distribution of uniform shear stress parallel to the direction of the net force (shown in Fig.
2) ; this approach was first proposed by Hyer and Klang (1985). The second one is a more
realistic distribution that the shear stress always flows parallel to the rivet boundary but
with a net resultant force (shown in Fig. 3). Discussion on this non-uniform shear stress
can be found in standard text books on strength of materials and elasticity (e.g., Timoshenko
and Goodier, 1970; Ryder, 1988; Gere and Timoshenko, 1990). More detailed math
ematical descriptions of both loading cases will be given in a later section.

It seems more realistic that the rivet should be considered in an infinite strip of finite
width, instead of an infinite plane. Theoretically, we can follow an alternating approxi
mation method by Howland (1928, 1930) and Howland and Stevenson (1933) to obtain
the stress concentration factor for an infinite strip subject to rivet loading. Such analysis
will be presented in our later publication and is, however, out of the scope of the present
study.

2. GOVERNING EQUATIONS

In this study, we consider the two-dimensional plane problem of rivet action on an
infinite plane, which is modelled by distributed body forces. In two-dimensional polar co
ordinates (r and e), the equations of equilibrium are:
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Fig. 2. A sketch for Auxiliary Problem I subject to Loading Case I (uniform distributed force, /0,
with a net resultant force P = f o1W

2
). Domains 1, 2 and 3 are the infinite plane (r > R), the portion

of rivet with distributed force (0 < r < a), and the portion of rivet without distributed force
(a < r < R), respectively.
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Fig. 3. A sketch for Auxiliary Problem I subject to Loading Case II (non-uniform distributed force
with a net resultant force Pl. Domains I and 2 are the infinite plane (r > R) and the rivet (0 < r < R),

respectively.

(la)

(lb)

where (Jm (Jre and (Joo are the radial, shear and hoop stresses, respectively; Fr and Fo are the
radial and tangential components of the body force, respectively. For isotropic materials,
the stress components satisfy the following compatibility condition:

where

(2a)
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(2b)

is the plane Laplacian operator in polar form. The material constant Ie equals to 3- 4v for
plane strain problems and (3 - v)/(1 +v) for plane stress problems, where v is the Poisson's
ratio of the material.

For our later stress analysis, we introduce here two potentials Vand W such that:

oV V-W loW
F, = - a;: - -r-; Fe = - ~aii' (3)

Note that the dimension for Vand W is force per unit area. The introduction of these two
potentials is motivated by their ability to model the non-conservative, non-uniform body
force distribution shown in Fig. 3. Together with an Airy stress function n, the stress
components are:

(4a)

(4b)

(4c)

For the body force shown in Fig. 2, we can set V = W, since the body force can be shown
to be conservative, in the sense that of,/(oO) = o(rFo)/(or) is satisfied (e.g., Karasudhi,
1991). Note that the stresses in (4) satisfy exactly the equations of equilibrium (1). Sub
stitution of (3) and (4) into (2a) gives the equation of compatibility in terms of n, V and
W:

(5a)

where V4 = V2V2 is the biharmonic operator. For the special case of conservative body
force, we have:

(5b)

If the body force vanishes (i.e., V = W = 0 as F, = Fe = 0), (5b) reduces further to a
biharmonic equation for the Airy stress function n (Timoshenko and Goodier, 1970). Any
particular problem in plane elasticity will be the solution ofn in (5) with appropriate forms
of Vand Wand the proper boundary conditions.

3. AN INFINITE PLANE LOADED BY A RIVET

As mentioned in the Introduction, a procedure modified from Knight (1935) for the
determination of contact stresses on the rivet hole will be adopted here. We assume that
the contact portion between the plane and the rivet occupies half of the circular boundary
shown in Fig. 1; and non-slip condition occurs. Although some authors have shown that
the contact region may actually differ from 1800 (e.g., see Noble and Hussain, 1969; de
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long, 1977; Hyer and Klang, 1985; Mizushima and Hamada, 1983; Hyer et al., 1987),
there is no sufficient information to relate the contact region as a function of both the
relative stiffness and the frictional coefficient between the rivet and the plane. Therefore,
we do not pursue this possibility in details here, but we should add that the present analysis
can easily be modified to case with contact region other than 180°, provided that the contact
region is given with confidence. In addition, the rivet is assumed to fit perfectly into the
hole of the plane when it is unloaded.

As suggested by Knight (1935), the rivet problem can be considered as the super
position of two auxiliary problems:

I. The first problem is the determination of appropriate Airy stress function n for the
plane loaded by a perfectly bonded inclusion of a different material (Figs 2 or 3).

II. The second problem is to seek another Airy stress function <I> giving stresses that cancel
both normal and shear tractions found in problem I on the left-hand half of the circular
boundary, but change them to cos ()- and sin 2()-dependency respectively on the right
hand half.

Thus, the stress distribution around the rivet hole will simply be the superposition of
Auxiliary Problems I and II. That is, the final stress concentration can be calculated from
the following Airy stress function:

(6)

Contrast to all previous studies (except Hyer and Klang, 1985; and Hyer et al., 1987), the
in-plane loading is treated as body forces distributed on the rivet's section. The two different
types of body force distributions are: (i) Loading Case I : uniform distributed forces (UDF)
shown in Fig. 2; and (ii) Loading Case II: non-uniform distributed forces (NDF) shown
in Fig. 3. The cases of uniform (conservative) and non-uniform (non-conservative) body
forces will be considered separately next.

3.1. Loading Case I: UDP
In this section, we assume that the rivet is loaded by a uniform shear stress distributed

over its section as shown in Fig. 2. Similar to the analysis by Hyer and Klang (1985), the
shear stress on the rivet's section is treated as body forces. Although this distribution may
not be realistic along the circular boundary of the rivet, it provides an improvement over
the previous approach that the force transmitted by the rivet acts as a concentrated force
at the centre of the rivet (e.g., Knight, 1935; Theocaris, 1956; Mori, 1972).

3.1.1. Auxiliary Problem I. Consider that the force carried by a rivet of radius R is
uniformly distributed with intensity fo (force per unit volume) within the section r ~ a, as
shown in Fig. 2, and that the rivet and the plane are perfectly bonded. The net resultant
force P (force per unit thickness) acts on the rivet is simply foncl. As shown in Fig. 2,
domain 1 denotes the region of the plane; domains 2 and 3 denote the regions of the
inclusion with and without distributed forces, respectively. The main reason for the intro
duction of domain 3 is that the limiting case of alR ~ 0 with P = fona2 being kept constant
corresponds to the solution considered by Knight (1935). In our later discussion, we will,
however, concentrate on the case that either a ~ 0 or a = R with constant P. The stress
and displacement continuity conditions between domains 1and 3 on r = Rand - n ~ () ~ n
are:

(T~:)(R, ()) = (T~~)(R, ()) (7a)

(T~~) (R, ()) = (T~J) (R, ()) (7b)

u~3)(R, ()) = u~I)(R, ()) (7c)

u~3)(R, ()) = u~I)(R, ()) (7d)
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where u, and Uo are the radial and tangential displacements, respectively. The superscript
on both stress and displacement denotes the domain number. Similarly, the continuity
conditions between domains 2 and 3 are exactly same as those in (7) except that R is
replaced by a and superscript"1" by "2".

As shown in Fig. 2 for uniform distributed force, the horizontal and vertical com
ponents of the body force are:

(8)

respectively. In polar co-ordinates, the radial and tangential components of the body force
become:

(9)

Since these two components of the body force are conservative [i.e., of,/(o()) = o(rFo)/(or)],
we can set W = V, as remarked in Section 2. Substitution of (9) into (3) with W = V leads
to:

V= -forcos(). (10)

Hence, the compatibility eqn (5b) for domain 2 becomes a biharmonic equation v4n(2) = o.
For the stress expressions and the compatibility equation in domains 1 and 3, we can simply
set V = W = 0 in (4) and (5).

Our next step is to find a suitable form for the Airy stress function for domains 1, 2
and 3. From (4) and (10), we see that the stress function n should produce stress terms
which match with the cos () term in the potential V given in (10), and it should also be an
even function of (). Consequently, we assume the following Airy stress functions:

[
CR2COS()]

n(l) =foR 2 Ar()sin()+Brlnrcos()+ r (1la)

(11 b)

(lIe)

where A, B, C, D, E, F, G and H are constants to be determined by continuity conditions
between domains 1 and 3, and domains 2 and 3. With the help of Table 4.1 of Karasudhi
(1991), the stresses and displacements can easily be expressed in terms of the unknown
constants A, B, C, D, E, F, G and H. Neglecting rigid body displacements, the continuity
conditions between domains 1 and 3 [given in (7)] and between domains 2 and 3 [similar
to those in (7)] provide a system of eight simultaneous equations with eight unknown
constants. The solution of this system is:

(12)

with p = (a/ R)2 and' = /12//11> where /1i is the shear modulus for the infinite plane if i = 1,
and for the rivet if i = 2. The same meaning also applies to the subscript for Ki •
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Substitution of (10), (lla) and (12) into (4) yields the following stress distributions in
the plane (domain I) if the rivet is bonded perfectly to the plane:

(13a)

(Bb)

(13c)

where

(14)

If the rivet and the plane have the same material properties (i.e., , = 1 and K, = K z), and if
the patch load in Fig. 2 shrinks to a concentrated load by setting a -+ 0 but keeping P = folWz

constant, equations (1.6) to (1.8) of Knight (1935) are recovered. Since the body force
approach is motivated by the shear stress on the rivet section, it seems obvious that the
body force should be distributed evenly over the whole section of the rivet (i.e., a = R).
When this special case is considered, the corresponding solution in Chapter 4 of Karasudhi
(1991) is recovered. Incorporating a = R, (13) can be simplified to:

a~:) = -foR[IA+KA3]cose (15a)

a~~) =foR[JA-KA3] sine (15b)

aW =foR[JA+KA3]COSe (15c)

where

1[1 2 ] (16)
K=2 Kz+'-K]+l'

Combining (14), (15c) and (16), it is peculiar to see that hoop stress vanishes on r = R, if
the rivet and plane are of the same material with v = 1/3 under plane stress condition (i.e.,= 1, K] =Kz =2). The Auxiliary Problem I has now been solved, our next step is to find
the Airy stress function <I> for the Auxiliary Problem II.

3.1.2. Auxiliary Problem II. Although there is reservation about the cos edependency
of the normal contact stress (e.g., Hyer and Liu, 1984), a cosinusoidal normal stress
distribution has widely been used (e.g., Bickley, 1928; Knight, 1935; Mori, 1972) and has
been found in good agreement with experiments by Nisida and Saito (1966). Hence, a
cosinusoidal distribution in normal contact stress on the right-hand half of the circular
boundary is assumed. As discussed in the Introduction, Fig. 12 of Hyer and Liu (1984)
showed that the shear contact stress can approximately be modelled by sin 2e, where e is
defined in Fig. 1. Therefore, instead of using sin eproposed by Knight (1935) we assume
here a shear contact stress variation of sin 2e. More specifically, we let the final contact
stresses be :
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(j;~) = {-foRMl cos8 for -n12 ~ 8 ~ nl2

o for nl2 ~ 8 ~ nand -n ~ 8 ~ -n12

(I) _ {foRMl sin 28 for -n12 ~ 8 ~ nl2
(jo -

r 0 for nl2 ~ 8 ~ nand - n ~ 8 ~ -n12
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(17a)

(17b)

where M, and M 1 are parameters to be determined. Physically, this assumption predicts
that a gap is developed on the left-hand half of the circular boundary as the rivet load
increases and that the load is transferred to the plane through the right-hand half only.
However, M I and M 1 are not mutually independent, and must satisfy the following force
equilibrium in the x-direction:

(18)

Substitution of (17) into (18) gives the following relation between M 1 and M 1.

(l9a)

Hence, the contact stresses can be expressed in term of either M, or M 1 only. Then, we may
simply let:

(19b)

Our main task now is to find k. In the rivet problem (unbonded inclusion case), (17) gives
the absolute value of the ratio of the shear contact stress to the normal contact stress as :

I
(j(l)(r - R) I

rO - = 12ksin81
(j~~) (r = R)

(20)

where -n12 ~ 8 ~ n12. Besides the polar co-ordinate 8, this ratio depends on k only. In
general, we expect the magnitude k for the contact stresses to depend on the relative material
properties of both the rivet and the plane. However, the exact magnitude requires the
solution of a very complex contact problem. Instead of solving the contact problem, we
propose here a very simple approximation by which k can be obtained.

For the case of bonded inclusion, (15) shows that l(j~~)(r = R)MP(r = R)I is pro
portional to the term (J - K)/(l+K) which depends on material properties of both the
plane and the rivet, where I, J and K are defined in (14) and (16). Suggested by this
observation, we assume that the stress ratio for the rivet problem is also proportional to
(J - K)/(l+K). With this assumption on the stress ratio and from (20), the parameter k
should be proportional to (J - K)/(l+K). Combining our assumption with this infor
mation, we have:

l
(j;~)(r = R)j IJ-K' , . 81- --C sm
(j~~)(r = R) - I+K

(21)

where C is an unknown constant to be determined. Since, we assume non-slip condition in
this study, the maximum of the shear to normal contact stress ratio must be bounded by
the frictional coefficient between the rivet and the plane: l(j;~)(r = R)I(j~p(r = R)I ~ fl. The
maximum of the right-hand side of (21) occurs when 8 = ±nl2 and for ( --+ 00 (i.e., a rigid
rivet). For this special case, we have C = fl. Consequently, comparing (20) and (21), k can
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be related to the material constants of the rivet and plane, and the frictional coefficient on
the contact as:

(22)

In obtaining (22), we have tacitly assumed that /.l is independent of'- Of course, /.l may in
general depend on (. However, how /.l relates to ( remains an open issue; further study is
required. The validity of (22) can only be justified by experiments; therefore, the exper
imental data from Fig. 12 of Hyer and Liu (1984) are used here for illustrative purpose. In
particular, Fig. 12 of Hyer and Liu (1984) showed that (JrO/(Jrr = 0.12 at e= n/4 (this angle
is chosen because there is distinct peak in (JrO) for the case of a steel pin in an isotropic
epoxy sheet; thus, from this value, k becomes 0.085. The Young's moduli for the steel pin
and epoxy sheet are taken as 200 GPa and 1.38 GPa, respectively; the Poisson ratio for the
steel pin is taken as 0.3. These parameters yield ( = 144.93 and 1<2 = 2.077; consequently,
from (22), we have /.l = 0.17, which is within the reasonable range of frictional coefficient
between steel and epoxy. However, further experimental studies are still required to check
the validity of (22). In a later section, we will see that our final hoop stress concentration
based on this assumption does provide results which are comparable to experimental
observation.

In order to find the final stress function \fI in (6) for an infinite plane subject to rivet
loading, we superimpose another Airy stress function <I> onto n derived in the previous
section so that the resultant stresses at the circular boundary are equal to (17). The stresses
on the circular boundary induced by <I> must equal:

00

(J~:) = -foR L An cos ne
n=O

__ ~- foR[M, - (I+K)] cos e for -n/2 < e < n/2
(23a)

oR[I+K]cose forn/2 < e < nand -n < e < -n/2

ce

(J~~) = foR L Bn sin ne
n=}

__ roR[M2 sin 2e - (J - K) sin e] for - n/2 < e < n/2
(23b)

-foR[J-K] sine for n/2 < e < nand -n < e < -n/2

where An and Bn are the unknown coefficients to be determined, and I, J, K, M] and M 2

are defined in (14), (16), (19a-b) and (22). Of course, the addition of (23) to (15) gives the
boundary conditions (17), as expected. Note that, in order to provide the boundary con
ditions for our calculation of the Airy stress function <I> in domain 1, we also expand (J}:l

and (J~~) into Fourier cosine and sine series in (23), respectively. By expressing the right
hand side of (23) into infinite Fourier series and comparing the coefficients, we obtain:

M,-2(l+K)
A - .
1- 2 ' j

(-ly!2+12MI

An = n(n2 -I)

o

!
(_I)<n+ ]l!24M2

Bn = n(n 2 -4)

o

for n = 2,4, 6, ...

for n = 3,5,7, ...

forn=3,5,7, ...

for n = 4,6,8, ... (24)
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We have now obtained the contact stress distributions on r = R in terms of Fourier series.
However, we are interested in the stress concentration in the plane around the rivet

hole. Thus, a more general form of the Airy stress function «1> for domain 1, which is valid
for the whole plane (i.e. r ~ Rand - n :::;; 8 :::;; n), is considered:

(25)

where Do, Db Dnand En are coefficients to be determined. Substitution of (25) into (4) gives
the following stress components (of course, with V = W = 0 in domain 1) :

(26a)

a~~) = foR{ -2D 1A3 sin8- n~2 [n(n+ I)DnAn+2+n(n-I)EnAn]sinn8} (26b)

aW = foR{ - DoA2+ 2D 1A3 cos 8+ n~2[n(n + 1)DnAn+2+ (n - I)(n - 2)En}."] cos n8}

(26c)

where A is again defined in (14). Matching coefficients 9f cos(n8) and sin(n8) of (26) with
(23) on r = R gives:

1
(_1)n/2 M

1

n(n2 -I)(n+ I)
D =

n (-I)(n-l)/22M2
nn(n+ I)(n-2)

for n = 4,6, 8, ...

for n = 3, 5,7, ... 1
(_1)"/2+1 M

j

n(n-I)(n2-1)
E =

n (_I)(n+l) /2 2M2

n(n-I)(n2-4)

for n = 4, 6, 8, ...

for n = 3,5,7, ...

(27)

By combining (26) and (27), the stresses in the plane for the stress function «1> can be
obtained in terms of infinite sine and cosine series. A nice feature of the present analysis is
that the stresses given in (26) can be summed exactly to give a closed-form solution
composing only elementary functions. In particular, by using some of the formulas of
Prudnikov et al. (1986), which are reported in the Appendix for the sake of completeness,
and rearranging the results, we finally obtain the stresses due to the stress function «1>, r ~ R
and 0 :::;; IcPl :::;; n,

tan-
1 iX[M1 (A

4
-4A

2
-I)Sin cP 12( 12) 2,J.,]}

+ n 4A +M2A I-A cos 'I-' (28a)
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(I) = I' R{- [(MI -2(l+K'))JP + M 2(3+,F)] ,/,.+M '2(12 -~) . 2,/,.
a..o J 0 2 3nA cos 'I' 2Ie II. 2 sm 'I'

where

(28d)

and a new notation 1> = nl2 - () is used for the convenience of later discussion (see Fig. 2).
These equations can be further simplified by the substitution of I, J, K', M 1 and M 2 from
(14), (16), (19a-b) and (22). However, we will not simplify (28a-e) because, as shown later
in Section 3.2, the stress distribution for the cases of non-uniform body force (NDF) shown
in Fig. 3 conforms exactly to the form of (28a-e) given above if K' and fo are identified
properly.

3.1.3. Rivet problem. For the infinite plane loaded by a rivet with uniform distributed
body force, the final stresses in the plane are simply the superposition of (15) and (28). The
final stresses, of course, satisfy the boundary conditions (17). Before we consider the
solution for the case that the rivet is loaded by non-uniform body force, it would be
worthwhile to consider the hoop stress on the circular boundary. Summation of (15c) and
(28c), and specialization of the resulting equation to r = R (i.e., A = 1) gives the following
hoop stress:

(
0 < 1> < n ) {2M! ( J-I )

aW _ n < 1> < 0 = fo R -;- + M 1 +J _ I sin 1> +M 2 cos 21>

where 0 < 11>1 < n. Note that at 1> = 0 or ± n (29) remains valid as the corresponding limit
of the last square-bracketed term in the right-hand side tends to zero. The maximum hoop
stress and its location can be determined from (29).

3.2. Loading Case II: NDF
We now consider a more complicated but realistic distribution of forces on the rivet

shown in Fig. 3. Similar diagram of stress distribution can also be found in standard
text book on "Strength of Materials" (e.g. Fig. 7.10 of Ryder, 1988). The non-uniform
distribution is, therefore, motivated by the directional shear stress flow on the circular rivet
if the resultant force is carried by shear stress on the section.
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3.2.1. Auxiliary Problem I. The conditions of continuity on r = R between domains 1
and 2 are given by (7) if the superscript "3" in (7) is replaced by "2". As shown in Fig. 3,
domains 1 and 2 denote the plane and the rivet respectively. Similar to the analysis in
Section 3.1, the distributed shear stress is assumed as body forces. In particular, the
horizontal and vertical components of the body force due to the in-plane net shear force P
on the circular section can be represented as (Section 122 of Timoshenko and Goodier,
1970):

respectively. In polar co-ordinates, the radial and tangential components of the body force
are:

(31)

respectively. Note that these components of the body force are non-conservative; they can,
however, be expressed in terms of two potentials V and Was introduced earlier in (3).
Comparison of (3) and (31) gives:

(32a)

(32b)

Substitution of (32) into (Sa) results in the following compatibility equation for domain 2:

(33)

For the compatibility equation for domain 1, where no body force is applied, we can simply
set V = W = 0 into (Sa) (i.e., n(1) satisfies biharmonic equation). The general solution for
(33) would be the complementary solution of (33) (i.e., solution of biharmonic equation)
plus the particular solution of (33). It can be verified by direct substitution that the particular
solution to (33) for domain 2 is:

(34)

The appropriate form of the biharmonic solutions should, however, match with the cos ()
term both in (34) and in V and W. By taking this into consideration, we assume the
following complementary solutions for n~l) and n~2) :

P [ CCOS(}]n~l) = -- Ar(}sin(}+Brlnrcos(}+ ---
24nR 4 r

P
n(2) = --[Dr 3 cos ()]

, 24nR 4

(3Sa)

(3Sb)

where A, B, C and D are arbitrary constants. The Airy stress function for the solution of
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the Auxiliary Problem I is, therefore, n~1
) for the plane and n~2) + n~2) for the rivet. Applying

the appropriate conditions of continuity similar to (7) and neglecting rigid body displace
ments, we obtain four simultaneous equations for A, B, C and D; and the solution for the
system is:

12R 4
(K 1 -1)

A = -12R 4
; B=---'-----'----'-

K 1 +1

C=~[7+6V2-2K2V2-K~(7+8V2) _ 6(2C+K2-K1K2)]
K2+C (K2+1)(I+v2) K1+l

where all symbols have the same definitions as those used in Section 3.1.1. Thus, in the case
of a bonded rivet, the stresses on the circular boundary of the plane can be obtained by
substitution of (32) and (34)-(36) into (4), we have:

0"(1) = -~[D..+K"Je3]cose
rr nR

P
0"(1) = -[JA-K"Je3]sine

r8 nR

P
O"W = -[JA+K"Je3]cose

nR

(37a)

(37b)

(37c)

where Je, I and J are again defined in (14), and K" = Cj(l2R6
), where C is given in (36)

above. It is important to note that (IS) and (37) are of the same form. Thus, the analysis
for Auxiliary Problem II follows the exact procedure employed in Section 3.1.2.

3.2.2. Auxiliary Problem II and rivet problem. Since the stress distributions in (37) for
the Auxiliary Problem I have the same form as (IS), the stress for Auxiliary Problem II in
the plane (i.e., r ~ Rand 0 ~ 14>1 ~ n) is again given by (28) provided that/DR is replaced
by P/nR and K' by K" defined above. The superposition of these stress distributions [similar
to (28)] on (37) yields the final stress distributions for the plane loaded by the rivet under
non-uniform body force shown in Fig. 3.

4. RESULTS AND DISCUSSION

The numerical results by Knight (1935) and Theocaris (1956) suggested that the effect
of Poisson's ratio is not very significant, thus, we set v = 1/3 for both the plane and rivet
under plane stress condition in the following calculations. The effect of the stiffness ratio
between the rivet and the infinite plane is examined by considering the results for three
different shear modulus ratio C. The infinite plane is loaded by three types of rivet: a very
soft rivet (C = 0.01), a rivet of the same material (C = 1), a very stiff rivet (C = 100).

The variation of the dimensionless normal contact stress O",,(nR/P) with 4> is plotted
in Fig. 4 for various values of frictional coefficient Il and the stiffness ratio C. We follow the
usual sign convention that compressive stress is negative. By virtue of symmetry, only the
range 0 ~ 4> ~ n/2 is plotted. The solid and dashed lines are for the cases of uniform and
non-uniform force distributions, shown in Figs 2 and 3 respectively; the dotted line is the
prediction by Knight (1935), who assume a concentrated force at the centre of the rivet
instead of distributed load. As expected, the maximum normal contact stress occurs at
4> = n/2, and it decreases with the stiffness ratio C. That is, the normal contact stress
increases as the rivet becomes softer, even though the total rivet force remains constant.
The prediction of 0"" by Loading Case II (NDF) is smaller than that by Loading Case I
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Fig. 4. The dimensionless normal contact stress (J,,(rrR/P) vs ¢ on r = R for various stiffness ratio
, and frictional coefficient IJ.. The Poisson's ratio for both plane and rivet is 1/3. The solid, dotted
and dashed lines are for Loading Cases I (uniform distributed force, UDF), Loading Case II (non-

uniform distributed force, NDF), and Knight's (1935) result.

(UDF). Note, however, that as ( increases the stress difference caused by Loading Cases I
and II diminishes, and becomes indistinguishable for ( = 100 as shown in Fig. 4. In addition,
Fig. 4 shows that the magnitude of the normal contact stress decreases with the frictional
coefficient fl. on the contact surface.

Figure 5 shows the normalized shear contact stress (Jro(nR/P) vs <P for various fl. and
(.The solid, dashed, and dotted lines have the same meaning as those for Fig. 4. As expected,
the maximum shear stress always appears at <P = n/4 and increases with (. Unlike the
normal contact stress, the prediction for (JrO by NDF is always larger than that caused by
UDF. Since non-slip contact is assumed, larger shear contact stress can be attained with
higher fl., as expected. We reiterate that the distribution of shear contact stress, of course,
agrees with the experimental result by Hyer and Liu (1984).

More importantly, the normalized hoop stress (Joo(nR/ P) on r = R vs <P is plotted in
Fig. 6 from - n/2 to n/2. Again, the figure legends are same as those in Fig. 4. As shown
in Fig. 6, the hoop stress distribution can, in general, be divided into two zones: the
compressive zone (-n/2 < <P < -<PI) and the tensile zone (-<PI < <P < n/2). Numerical
results show that <PI is about 60° to 70° which is relatively insensitive to both the stiffness
ratio ( and frictional coefficient fl.. It is peculiar that the hoop stresses at <P = -160 and 40°
are always equal to 0.95 and 0.85 respectively, independent of both ( and fl.. However, for
the case of a rigid rivet with high frictional coefficient on the contact surface (e.g., fl. = 0.5
and ( = 100), a second compressive zone appears near <P = n/2, which differs from all
previous theoretical predictions (e.g., Knight, 1935; Mizushima and Hamada, 1983).
Although such compressive zone near <P = n/2 is seldom observed, Frocht (1949) did
observe such a compressive zone experimentally using photoelastic method. In general, the
maximum tensile stress may not appear at <P = 0, its location deviates from the point <P = 0
for larger fl. and (. The maximum normalized hoop stress and its location for all cases
plotted in Fig. 6 are tabulated in Table 1. For a rigid rivet, the maximum (Joo(nR/P) for fl.
being 0,0.2 and 0.5 are 1.27, 1.36 and 1.52, respectively, by both Loading Cases I and II.
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Fig. 5. The normalized shear contact stress (J,o(nRjP) vs ¢ on r = R for various stiffness ratio ( and
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Table I. Maximum normalized hoop stress a••(rcRjP) at the boundary and its location for various frictional
coefficient, stiffness ratio and loading case (Uniform distributed force UDF and Non-uniform distributed force

NDF).

Frictional coeff. /.I 0 0.2 0.5

Stiffness ratio' 0.01 100 0.01 100
Max. normalized hoop stress

UDF 1.27 1.30 1.32 1.36 1.35 1.39 1.52
NDF 1.27 1.32 1.33 1.36 1.39 1.42 1.52

Location (degree) I/J 0.0 0.0 0.2 1.5 1.0 2.6 5.8

In addition, the maximum hoop stress increases with both f.J, and ,. The prediction of
maximum hoop stress by Loading Case II is larger than that by Loading Case I; and
their difference increases with jJ.. In other words, the hoop stress concentration may be
underestimated for Loading Case I when high frictional coefficient exists on the contact.
When the plane is loaded smoothly (i.e., jJ. = 0), a sharp peak in (;88 appears at ¢ = 0, this
agrees qualitatively with the result in Fig, 10 of de long (1977). Similar sharp peak was
also predicted by Mizushima and Hamada (1983), but their peak appears at about ¢ ~ 100.

Any theoretical prediction must agree with experiments, therefore Fig. 7 compares the
hoop stress prediction for the case of a rigid rivet and for various frictional coefficient with
the experimental results by Nisida and Saito (1966), Hyer and Liu (1984), Coker and Filon
(1931), and Frocht (1949). As remarked earlier, only Frocht's (1949) experimental results
show compressive hoop stress near ¢ = n/2. Although there is scattering of experimental
results, the shape and magnitude of our predicted hoop stress agree well with experiments.
This suggests that our assumed contact stresses should not differ significantly from the
actual contact stresses. Note also that all experimental results are observed on plates of
finite dimension; therefore, as suggested by Fig. 13 of Nisida and Saito (1966), these
experimental observations indeed overestimate the hoop stress concentration for infinite
plates.
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Fig. 7. Comparison of the normalized hoop stress a••(rcRjP) on r = R vs I/J for various frictional
coefficient /.I with the experimental results by Coker and Filon (\931), Frocht (1949), Nisida and

Saito (1966), and Hyer and Liu (1984). The rivet is assumed to be rigid.
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Fig. 8. The normalized radial stress (J"I(foR), shear stress (JriJI(foR) and hoop stress (J••/(foR) vs ¢
for various values of riR. Only the results for Loading Case I are shown, and the following

parameters are used: , = I and Jl = 0.2.

Conclusions for Figs 4-7 apply only to the contact stress at the boundary r = R. Figure
8 shows how the stress concentration decays with radial distance from the hole boundary,
and only Loading Case I is shown for illustrative purpose. The rivet is assumed to have the
same material properties of the plane with coefficient of friction J..I. = 0.2. Figure 8 shows
the normal stress (Jrr/(foR), shear stress (Jro/(foR) and hoop stress (Joo/(foR) vs 1> for various
values ofr/R. As shown in Fig. 8, all these dimensionless stresses decay rapidly and smoothly
with radial distance and become negligible for r/R ;): 5.

5. CONCLUSION

We have derived analytically a closed-form solution for the stress concentration in an
infinite plane loaded by a rivet of an arbitrarily different material. Unlike previous studies
(e.g., Knight, 1935; Theocaris, 1956; Mori, 1972), the load carried by the rivet is modelled
as distributed body forces, instead of a concentrated load at the centre of the rivet. Two
body force potentials are introduced to model the cases ofconservative, uniform distributed
force shown in Fig. 2 (Loading Case I: UDF) and non-conservative, non-uniform dis
tributed force (Loading Case II: NDF) similar to those caused by shear force on a circular
section shown in Fig. 3. Our results show that the normal contact stress on r = R decreases
with stiffness ratio ( = 112/J..I.I (Ill and J..I.2 are the shear moduli for the plane and the rivet,
respectively), but the shear contact stress increases with (. The normal contact stress for
Loading Case I is larger than those for Loading Case II, while the shear contact stress for
Loading Case I is smaller than those for Loading Case II. These differences are more
apparent for higher value of frictional coefficient J..I. between the plane and rivet. On the
hole boundary, the hoop stress can, in general, be divided into a compressive zone
(-n/2 < 1> < - 1>1) and a tensile zone ( - 1>1 < 1> < n/2). A typical value for 1>1 is from 60°
to 70°. For the case of a rigid rivet with high-friction contact (e.g., J..I. = 0.5 and ( = 100), a
second compressive zone appears near 1> = n/2, this differs from all previous theoretical
predictions (e.g., Bickley, 1928; Knight, 1935; Mizushima and Hamada, 1983). However,
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such a compressive zone near ¢ = nl2 was observed by Frocht (1949) using photoelastic
method. The maximum normalized hoop stresses for a rigid rivet with J1. equal to 0, 0.2 and
0.5 are 1.27, 1.36 and 1.52, respectively, by both Loading Cases I and II. Larger J1. and (
result in higher maximum hoop stress and the corresponding location of maximum hoop
stress deviates farther from the point ¢ = o.

Although ad hoc assumptions have been made in obtaining the contact stresses, which
depend on the material constants of both rivet and plane, and the frictional coefficient on
the contact zone, our predictions are comparable to the experimental results by Coker and
Filon (1931), Frocht (1949), Nisida and Saito (1966) and Hyer and Liu (1984). This lends
credence to the validity of the assumed contact stresses; however, further experimental and
theoretical studies are recommended. The extension of the present analysis to the problem
of rivet action on an infinite strip will be an interesting study to be considered next. In
particular, the alternating method of Howland (1928, 1930) and Howland and Stevenson
(1933) may be used in such analysis.
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APPENDIX

The following equations for infinite sums are obtained from Prudnikov et at. (1986). Each formula has been
checked numerically; we found some minor typos in the formulas we used, thus, corrections have been made to
the original equations before they are reported below. The following formulas are adopted from eqns (7) and (14)
of Section 5.4.9 of Prudnikov et at. (1986) for Irl < I and 0 < x < 2n:

00 r". I {X [2j; . XJ . x [2j; XJ}L --smnx = -- cos-tan- I --sm- - sm-tanh- I --cos-
.~o2n+1 2j; 2 I-r 2 2 I+r 2

00 r" j;{ x [2j; XJ x [2j; XJ}L --cosnx = - cos-tanh- I --cos- - sin-tan- I --sin- -I
.~o2n-1 2 2 I+r 2 2 I-r 2

After some minor corrections to eqn (6) of Section 5.4.9 of Prudnikov et at. (1986) for Irl < I, we have:

esc r
2n

+
1

I [2rSinXJL -2I sin(2n+ I)x = -2 tan - 1 --
n~O n+ l-r2

x r
2.+ I I [2rCOs XJL-2Icos(2n+l)x =-2tanh-1 --,-.

n~O n+ I+r"

(AI)

(A2)

(A3)

(A4)

(AS)

(A6)

Substitution of (27) into (26) and expansion of the resulting coefficients into partial fractions, then (A I) to (A6)
above can be applied to obtain (28) given in the text. A similar procedure also applies to Loading Case II
considered in Section 3.2.


